GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW)
CHEMISTRY - COMPONENT 2
A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=\quad$ correct answer only
ecf	$=\quad$ error carried forward

bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1				ultraviolet light is needed to break the $\mathrm{Cl}-\mathrm{Cl}$ bond / produce chlorine free radicals (1) $\begin{equation*} \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl} \tag{1} \end{equation*}$	1	1		2		
2			$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{14} \quad(1) \\ & 4 \mathrm{H}_{2} \quad(1) \end{aligned}$	1	1		2			
3	(a)		$\begin{align*} & M_{r} \text { of urea }=60.04 \\ & \% \text { of nitrogen }=\frac{2 \times 14.0}{60.04}=46.6 \tag{1} \end{align*}$	1	1		2			
	(b)		sodium hydroxide / NaOH / OH ${ }^{-}$		1		1		1	
4	(a)		potassium manganate(VII) / manganate(VII) / $\mathrm{KMnO}_{4} / \mathrm{MnO}_{4}{ }^{-}$ do not accept 'acidified'	1			1		1	
	(b)		 it must contain an aldehyde group (as these reduce Fehling's solution) (1)		1	1	2			

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)		e.g. hot and cold water baths	1			1		1
		(ii)	moles of sucrose used $=25 / 342=0.0731$ moles of dihydrate expected $=0.0731 \times 6=0.439$ moles of dihydrate produced $=18.0 / 126=0.143$ percentage yield $=0.143 \times 100 / 0.439=32.6 \quad$ accept 33		2		2	2		
		(iii)	ethanedioic acid - both carbon atoms are in equivalent environments - therefore 1 signal (1) oxopropanoic acid - 2 carbon atoms are in the same environment and the other carbon atom is in a different environment - therefore 2 signals (1)	1	1		2			
	(b)		award (2) for correct equation $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+2 \mathrm{HNO}_{3}+5 / 2 \mathrm{O}_{2} \rightarrow(\mathrm{COOH})_{2}+\mathrm{CO}_{2}+2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ if incorrect award (1) for HNO_{3} on the left hand side only (1)		2		2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)		ethanoyl chloride / $\mathrm{CH}_{3} \mathrm{COCl} /$ ethanoic anhydride / $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	1			1		
		(ii)			3		3			
		(iii)	any of following for (1) - run the reaction at a higher temperature / above $50^{\circ} \mathrm{C}$ - use an excess of the nitrating agent - add the N -phenylethanamide to the nitrating mixture rather than the reverse addition			1	1		1	
		(iv)	dissolve in a minimum volume of the hot solvent (1) filter hot if necessary (1) allow to cool (1) filter, (wash) and dry at $<180^{\circ} \mathrm{C} /$ room temperature / window sill / warm oven (1)	4			4		4	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)			any of following for (1) - nitrous acid - $\mathrm{HNO}_{2} / \mathrm{HONO}$ - sodium nitrite / sodium nitrate(III) + hydrochloric acid - $\mathrm{NaNO}_{2}+\mathrm{HCl}$ temperature of $10^{\circ} \mathrm{C}$ or less (1)	2			2		2
	(ii)	1	black / no colour as there is no red light to be transmitted / all the light is absorbed			1	1			
		II	red as red light is not absorbed			1	1			
(c)	(i)		limonene contains two $\mathrm{C}=\mathrm{C}$ double bonds therefore 2 mol of Br_{2} react with 1 mol of limonene (1) therefore $2 \times 159.8 \mathrm{~g} / 319.6 \mathrm{~g}$ bromine react with 1 mol of limonene moles of bromine used $=9.58 / 159.8=0.060$ moles of limonene $=0.030$ M_{r} of limonene $=4.08 / 0.030=136$ (1)		3		3	2		
	(ii)		there are two $\mathrm{C}=\mathrm{C}$ bonds present therefore two moles of H_{2} are needed for full hydrogenation (1) the M_{r} therefore increases by 4 , hence 140 (1) ecf from part (i)		2		2			
			Question 9 total	7	8	3	18	2	6	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		the compound (largely) exists as a zwitterion with positive and negative charges (1) these opposite charges are strongly attracted to each other - more energy is needed to overcome these forces therefore higher than expected melting temperature (1)		2		2		
		(ii)				1	1			
	(b)				1		1			
	(c)		groups that take part in this hydrogen bonding are this occurs because of polarisation in the bonds $\mathrm{N}^{\delta-}-\mathrm{H}^{\delta+}$ and ${ }^{\delta+} \mathrm{C}=\mathrm{O}^{\delta-} \quad$ (1) (could be shown in a diagram)	2			2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)		alcohols have hydrogen bonding between molecules (could be seen in a diagram) (1) this hydrogen bonding effect is greater when the group is a 'more significant' part of the molecule (1) when the effect of hydrogen bonding is greater (as in methanol) more energy is needed to overcome this attraction, leading to a 'higher' boiling temperature (1)	1	1	1			
	(ii)	there is no hydrogen bonding between molecules of the thiols (1) less energy is needed to overcome the relatively weaker van der Waals forces between molecules (compared with the alcohols), leading to relatively lower boiling temperatures (1)		1	1	2			
(e)	(i)	hydrogen chloride is produced as a gaseous co-product, this is lost from the reaction (1) moves the position of equilibrium to the right (1) the method using ethanoic acid produces water as a co-product and the reaction reaches a position of equilibrium (1)			3	3			
	(ii)	any of following for (1) - hydrogen chloride (gas) is irritant - the reaction needs to be done in a fume cupboard - the reaction needs anhydrous conditions			1	1		1	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)		warm 2-chloroethanol with aqueous sodium hydroxide (1) acidify the mixture with (aqueous) nitric acid (1) add aqueous silver nitrate (1) white precipitate (of silver chloride) confirms the presence of a $\mathrm{C}-\mathrm{Cl}$ bond (1)	2	2		4		4
		(ii)	chloroethanol to chloroethanoic acid \rightarrow mole ratio $=1: 1$ (1) 83% conversion, therefore originally $100 \times 0.0600 / 83=0.072 \mathrm{~mol}$ of chloroethanol (1) mass of 2-chloroethanol $=0.072 \times 80.6=5.80 \mathrm{~g}$		1	1	3	1		
	(b)	(i)	it does not contain polar groups (accept examples) that can hydrogen bond with water			1	1			
		(ii)	hydrogen and platinum / nickel catalyst		1		1			
		(iii)	```total relative peak area = 48+13+10+9=80 (1) 48 is equivalent to 0.018 mol kg-1 total concentration = 80 x 0.018/48=0.030(mol kg-1)```			2	2	1		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13	(a)	(i)		an atom that has four different groups or atoms bonded to it	1			1		
		(ii)			1		1			
	(b)		it will react / reduce Tollens' reagent (1) giving a silver mirror (1)	2			2		2	
	(c)		$\begin{align*} & \mathrm{m}=\frac{\mathrm{r} \times \mathrm{v}}{\left[\alpha_{D}\right]}=\frac{20 \times 15}{112}=2.68(\mathrm{~g}) \text { (in } 15 \mathrm{~cm}^{3} \text { solution) } \\ & \text { concentration in } \mathrm{g} \mathrm{dm}^{-3}=\frac{2.68 \times 1000}{15}=179 \tag{1} \end{align*}$		1	1	2	2		
	(d)	(i)	(concentrated) sulfuric acid / aluminium oxide / porous pot	1			1			
		(ii)	no free rotation about the $\mathrm{C}=\mathrm{C}$ double bond (1)	1	1		2			

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	4	10	1	15	0	5
8	5	9	2	16	4	4
9	7	8	3	18	2	6
10	3	8	10	21	3	1
11	6	0	3	9	0	4
12	5	12	4	21	2	4
13	5	8	7	20	2	5
Totals	35	55	30	120	13	29

